CS 61B Small Group Tutoring
Summer 2020 Section 6 Trees, Staeks, and Queues Worl{sheet 6

1 Tree— versal

a) What is the pre-order traversal of the tree?

b) What is the post-order traversal of the tree?

¢) What is the in-order traversal of the tree?

d) What is the breadth-first traversal of the tree?

CS 61B, Summer 2020, Worksheet 6 1

2 Sum Paths

Define a root-to-leaf path as a sequence of nodes from the root of a tree to one of its leaves. Write a method
printSumPaths (TreeNode T, int k) that prints out all root-to-leaf paths whose values sum to k.
For example, if T is the binary tree in the diagram below and k is 13, then the program will print out 10 2
lononelineand 10 4 -1 on another.

(a) Provide your solution by filling in the code below:
public static void printSumPaths (TreeNode T, int k) {

if (T != null) {
sumPaths ()i

public static void sumPaths (TreeNode T, int k, String path) {

}

(b) What is the worst case runtime of printSumPaths in terms of N, the number of nodes in the tree?
What is the worst case runtime in terms of /, the height of the tree?

3 Sum Tree

Given a binary tree, check if it is a sum tree or not. In a sum tree, value at each non-leaf node is equal to
the sum of all elements presents in its left and right subtree. For example, the following binary tree is a sum
tree -

CS 61B, Summer 2020, Worksheet 6 2

|: 30 |
Ay
(21)
ri ‘-_____.-“\\
,
\
™,
P ?"\
N &
Y N
Y @D
< </

public boolean isSumTree (TreeNode t) {

CS 61B, Summer 2020, Worksheet 6

4 When am [Useful Senpai?

Based on the description, choose the data structure which would best suit our purposes. Choose from:
A - arrays, B - linkedlists, C - stacks, D - queues (excluding dequeue’s cause they’re too OP).

1. Keeping track of which customer in a line came first.
2. We will expect many inserts and deletes on some dataset, but not too many searches and lookups.

3. We gather a lot of data of a fixed length that will remain relatively unchanged overtime, but we ac-
cess its contents very frequently.

4. Maintaining a history of the last actions on Word in case I need to undo something.

CS 61B, Summer 2020, Worksheet 6 4

5 Pseudo Stack

Implement a stack’s pop and push methods using two Queues. Assume that we have a MyIntQueue
class with API :

boolean isEmpty () //returns true if the queue is empty
void enqueue (int item) //adds item to the back of the queue
int dequeue () //removes the item at the front of the queue

int peek () //returns but doesn’t remove the item at the front of the queue
int size () //returns the size of the queue

public class MyIntStack {
MyIntQueue gl = new MyIntQueue();
MyIntQueue g2 = new MyIntQueue ()

4

public boolean isEmpty () {
//Implementation not shown

}

public int size () {
//Implementation not shown

}
public void push(int item) {

public int pop () {

CS 61B, Summer 2020, Worksheet 6

6 A Balancing Act

Given a string str, containing just the characters (,), {, }, [, and], implement a method hasValidParens
which determines if the string is valid.

The brackets must close in the correct order so ” (), ” () {}”, and ” [() 17 are all valid, but ” (”, " ({) }”,
and "’ [(" are not.

You may use the get RightParen method provided below.

private static boolean hasValidParens (String str) {

Stack s = new Stack();
for (int 1 = 0; 1 < str.length(); i++) {
char ¢ = str.charAt (i);
if |) A
} else {
if |) A
}
if (¢ I=) A

/ *x
The method getRightParen takes in the left parenthesis
and returns the corresponding right parenthesis.

* %/
private static char getRightParen (char leftParen) {
if (leftParen == ' (") {
return ')’ ;
} else if (leftParen == "{’) {
return "}’;
} else if (leftParen == "[’) {
return '17’;
} else {

//not one of the valid parenthesis characters
throw new IllegalArgumentException();

CS 61B, Summer 2020, Worksheet 6 6

	Tree-versal
	Sum Paths
	Sum Tree
	When am I Useful Senpai?
	Pseudo Stack
	A Balancing Act

